Exploring the Membrane Mechanism of the Bioactive Peptaibol Ampullosporin A Using Lipid Monolayers and Supported Biomimetic Membranes

نویسندگان

  • Marguerita Eid
  • Sonia Rippa
  • Sabine Castano
  • Bernard Desbat
  • Joël Chopineau
  • Claire Rossi
  • Laure Béven
چکیده

Ampullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/3(10)-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core. The relevance of the inner lipid leaflet nature was studied by comparing ampullosporin binding on a hybrid bilayer, in which this leaflet was a rigid alkane layer, and on supported fluid lipid bilayers. The membrane binding was examined by surface plasmon resonance spectroscopy and the effect on lipid dynamics was explored using fluorescence recovery after photobleaching. In the absence of voltage and at low concentration, ampullosporin A substantially adsorbed onto lipid surfaces and its interaction with biomimetic models was strongly modified depending on the inner leaflet structure. At high concentration, ampullosporin A addition led to the lipid bilayers disruption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review on Mechanism of Facilitated Transport on Liquid Membranes

Membrane processes are used in various felds such as the environment, agriculture and different industrial sectors. These clean techniques are often adopted for directed processes such as treatment, recovery, valorization and separation. In this review article, the theoretical principles and the different classifcations of liquid membranes, such as supported liquid membra...

متن کامل

Polysulfone Ultrafiltration Membranes Modified with Carbon-Coated Alumina Supported NiTiO2 Nanoparticles for Water Treatment: Synthesis, Characterization and Application

This paper reports on the synthesis and characterisation of polysulfone (PSf) ultrafltration (UF) membranes modifed with carbon coated alumina Ni-doped titanium dioxide (CCA/Ni-TiO2) nanoparticles. The syntheses of the membranes was carried out using the phase inversion process. The ...

متن کامل

Mercury-Supported Biomimetic Membranes for the Investigation of Antimicrobial Peptides

Tethered bilayer lipid membranes (tBLMs) consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic "spacer" anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of membrane peptides and proteins. A drawback in the use of mercury-supported tBLMs with respec...

متن کامل

Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy,...

متن کامل

Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanisms of formation of hybrid bilayer membranes.

The mechanism for the formation of biomimetic model cell membranes consisting of bilayers composed of alkanethiols and phospholipids was probed with a kinetic study using surface plasmon resonance. The kinetics of formation of a monolayer of phospholipid from vesicles in solution onto a hydrophobic alkanethiol monolayer is described by a model that takes into account the lipid concentration, di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010